Completely Well-Posed Problems for Nonlinear Differential Equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Stable Explicit Time Marching in Well-Posed or Ill-Posed Nonlinear Parabolic Equations
This paper analyzes an effective technique for stabilizing pure explicit time dif ferencing in the numerical computation of multidimensional nonlinear parabolic equations. The method uses easily synthesized linear smoothing operators at each time step to quench the instabil ity. Smoothing operators based on positive real powers of the negative Laplacian are helpful, and (−Δ)p can be realized ...
متن کاملQuasireversibility Methods for Non-well-posed Problems
The nal value problem, ut + Au = 0 ; 0 < t < T u(T) = f with positive self-adjoint unbounded A is known to be ill-posed. One approach to dealing with this has been the method of quasireversibility, where the operator is perturbed to obtain a well-posed problem which approximates the original problem. In this work, we will use a quasi-boundary-value method, where we perturb the nal condition to ...
متن کاملOn the Well-posedness of Nonlinear Boundary Value Problems for Functional Differential Equations
h(x) = 0, (2) by a solution of which we mean an absolutely continuous vector function x : I → R satisfying both the system (1.1) almost everywhere on I and the condition (1.2). The well-posedness of this problem is more or less satisfactorily investigated only in the cases when f is either the linear, or the Nemytski operator (see, e.g., [1]–[9] and the references therein). In a general case to...
متن کاملParameter Identification for Nonlinear Ill-posed Problems
Since the classical iterative methods for solving nonlinear ill-posed problems are locally convergent, this paper constructs a robust and widely convergent method for identifying parameter based on homotopy algorithm, and investigates this method’s convergence in the light of Lyapunov theory. Furthermore, we consider 1-D elliptic type equation to testify that the homotopy regularization can ide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1964
ISSN: 0002-9939
DOI: 10.2307/2034358